organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

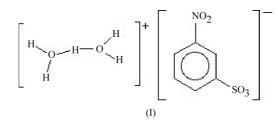
Clifford George,^a* Jeffrey R. Deschamps^a and Andrew P. Purdy^b

^aLaboratory for the Structure of Matter, Code 6030, Naval Research Laboratory, Washington, DC 20375-5341, USA, and ^bCode 6125, Naval Research Laboratory, Washington, DC 20375-5342, USA

Correspondence e-mail: george@harker.nrl.navy.mil

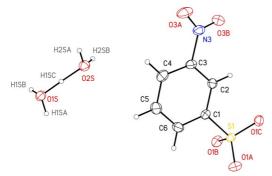
Key indicators

Single-crystal X-ray study T = 93 KMean σ (C–C) = 0.002 Å R factor = 0.036 wR factor = 0.104 Data-to-parameter ratio = 16.1


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dihydronium 3-nitrobenzenesulfonate

The title compound, $H_5O_2^+ \cdot C_6H_4NO_5S^-$, crystallized slowly over a period of several years. It is stable and the dihydronium cation is well determined; all of the H-atom positions in the cation were refined. The strong hydrogen bond between the O atoms is nearly linear, with the H atom near the midpoint of the two O atoms. The refined O—H distances are 1.15 (2) and 1.27 (2) Å, respectively.


Comment

In the title compound, dihydronium 3-nitrobenzenesulfonate, (I), two water molecules are strongly hydrogen bonded, with an $0 \cdots 0$ separation of 2.411 (2) Å, forming a dihydronium $(H_5O_2^+)$ cation. Each of the remaining H atoms in the cation participates in intermolecular hydrogen bonding with the sulfonate O atoms, and each sulfonate O atom acts as an acceptor, forming a three-dimensional network. There are a number of reports of dihydronium ions in the solid state. In the April 2002 release of the Cambridge Structural Database (Allen & Kennard, 1993), there are 36 occurrences in which the $0 \cdots 0$ separations are less than 2.6 Å between H_3O^+ and H_2O pairs. Some early examples are: bis[chloro(1,2-propane-diamine-N,N')cobalt] chloride hydrochloride hydronium (Saito & Iwasaki, 1962), and hydrogen chloride dihydrate (Lundgren & Olovsson, 1967).

In the current study, the data quality is sufficient to refine the dihydronium H-atom positions. The strong hydrogen bond between the water molecules is nearly linear, with the O- $H \cdot \cdot \cdot O$ angle equal to 177 (2)°. The hydrogen bonds between the ions are also nearly linear, with $O-H \cdots O$ angles in the range 174 (2)–179 (2)°. The central H atom in the cation has O-H distances of O1S-H1C = 1.15 (2) Å and O2S-H1C = 1.27 (2) Å. The dihydronium O atoms are pyramidal, with O1S 0.28(2) Å out of the plane formed by atoms H1A, H1B, and H1C, and O2S 0.32 (2) Å out of the plane formed by atoms H2A, H2B, and H1C. The remaining cation O-H distances are O1S-H1A = 0.86 (2) Å, O1S-H1B = 0.83 (2) Å, O2S-H1B = 0.83 (2) Å H2A = 0.81 (2) Å and O2S - H2B = 0.81 (2) Å. The structure of the 3-nitrobenezenesulfonate anion has been reported in guanidinium 3-nitrobenezenesulfonate (Russell & Ward, 1997) and in (2-p-benzoquinonediimine)decaamminediru-

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved Received 31 July 2002 Accepted 17 September 2002 Online 27 September 2002

Figure 1

Displacement ellipsoid plot of dihydronium 3-nitrobenzenesulfonate, drawn at the 50% probability level.

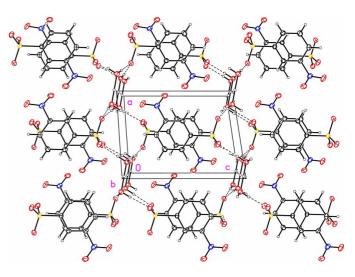
thenium(II,III) pentakis(*m*-nitrobenzenesulfonate) pentahydrate (Joss *et al.*, 1985). Here, the nitro group is twisted out of the benzene plane; the torsion angle C2–C3–N3–O3*B* is 20.2 (2)°. The orientation of the sulfonate is defined by the torsion angle C2–C1–S1–O1*B* of –104.6 (1)°. The roomtemperature (295 K) cell is a = 7.945 (4) Å, b = 8.119 (4) Å, c =9.389 (5) Å, $\alpha = 90.42$ (1), $\beta = 94.70$ (1) and $\gamma = 119.08^{\circ}(1)$.

Experimental

A Friedel–Crafts substitution on $PhCH_2CH_2Br$ with *m*-ClSO₂-C₆H₄NO₂, AlCl₃ and CH₂Cl₂ was worked-up by hydrolysis, drying of the organic layer, and distillation. The yellow distillate (383 K, vacuum) contained several products, from which dihydronium 3-nitrobenzenesulfonate, (I), crystallized over a period of several years. Apparently, (I) was formed from the hydrolysis of unreacted sulfonyl chloride.

Crystal data

$H_5O_2^+ \cdot C_6H_4NO_5S^-$	<i>Z</i> = 2
$M_r = 239.20$	$D_x = 1.540 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.872 (2) Å	Cell parameters from 3195
b = 7.986 (2) Å	reflections
c = 9.414 (2) Å	$\theta = 3.0-27.9^{\circ}$
$\alpha = 90.456 \ (5)^{\circ}$	$\mu = 0.33 \text{ mm}^{-1}$
$\beta = 95.284 \ (5)^{\circ}$	T = 93 (2) K
$\gamma = 118.701 (5)^{\circ}$	Plate, yellow
$V = 516.0 (1) \text{ Å}^3$	$0.52 \times 0.43 \times 0.18 \text{ mm}$


Data collection

Bruker SMART 1K CCD area-			
detector diffractometer			
φ and ω scans			
Absorption correction: multi-scan			
(SADABS; Bruker, 2001)			
$T_{\min} = 0.845, T_{\max} = 0.943$			
4192 measured reflections			

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.104$ S = 1.082433 reflections 151 parameters H atoms treated by a mixture of independent and constrained refinement 2433 independent reflections 2086 reflections with $l > 2\sigma(l)$ $R_{int} = 0.017$ $\theta_{max} = 28.2^{\circ}$ $h = -9 \rightarrow 10$ $k = -9 \rightarrow 10$ $l = -12 \rightarrow 12$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0655P)^{2} + 0.0567P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = 0.003$ $\Delta\rho_{\text{max}} = 0.47 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.44 \text{ e} \text{ Å}^{-3}$

Figure 2

Packing diagram, viewed down the b axis. Dashed lines indicate hydrogen bonds.

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} \hline 01S - H1SC \cdots 02S \\ 01S - H1SA \cdots 01A^{i} \\ 01S - H1SB \cdots 01C^{ii} \\ 02S - H2SA \cdots 01B^{iii} \\ 02S - H2SB \cdots 01C^{iv} \end{array} $	1.15 (2)	1.27 (2)	2.411 (2)	177 (2)
	0.86 (2)	1.79 (2)	2.643 (2)	177 (2)
	0.83 (2)	1.87 (2)	2.696 (2)	174 (2)
	0.81 (2)	1.85 (2)	2.656 (2)	177 (2)
	0.81 (2)	1.85 (2)	2.663 (2)	179 (2)

Symmetry codes: (i) -x, 1-y, 1-z; (ii) x-1, y-1, z-1; (iii) x, y, z-1; (iv) 1-x, 1-y, 1-z.

Only the dihydronium H-atom positions were refined.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1997); software used to prepare material for publication: *SHELXTL*.

The NRL authors wish to acknowledge financial support from the Office of Naval Research, Mechanics Division.

References

Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31–37.Bruker (1997). SHELXTL for UNIX. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03) programs using the Windows NT system. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lundgren, J. O. & Olovsson, I. (1967). Acta Cryst. 23, 966-971.
- Joss, S., Bürgi, H. B. & Ludi, A. (1985). Inorg. Chem. 24, 949-954.
- Russell, V. A. & Ward, M. D. (1997). J. Mater. Chem. 7, 1123–1133.
- Saito, Y. & Iwasaki, H. (1962). Bull. Chem. Soc. Jpn, 35, 1131–1136.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.